

LANDFIRE'S ROLE IN FUEL TREATMENTS AND WILDFIRE RISK ASSESSMENTS

Megan Sebasky

PULSE OF THE ROOM

Who manages land?

How many acres do you manage?

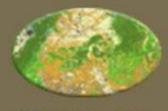
How many are "fire adapted"?

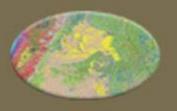
How many of you manage a fire use program?

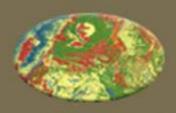
How many burns do you have on your land in a given year?

How many are concerned about fire risk from your lands?

OUTLINE


- What is LANDFIRE
- Fuels management applications
- Wildfire risk assessment applications
- Remap production update
- Remap data examples





LANDFIRE DATA PRODUCTS

Vegetation

Fuel

Fire Regime

Disturbance -2 yr. Cycle

Existing Vegetation: Cover, Height, Type Biophysical Settings Environmental Site Potential FBFM13 FBFM40

Canopy: Height, Bulk Density, Base Height,

Cover

Fire Regime Group Mean Fire Interval % Low, Mixed, High Severity Succession Classes Veg. condition class Veg. departure

LANDFIRE DATA USES

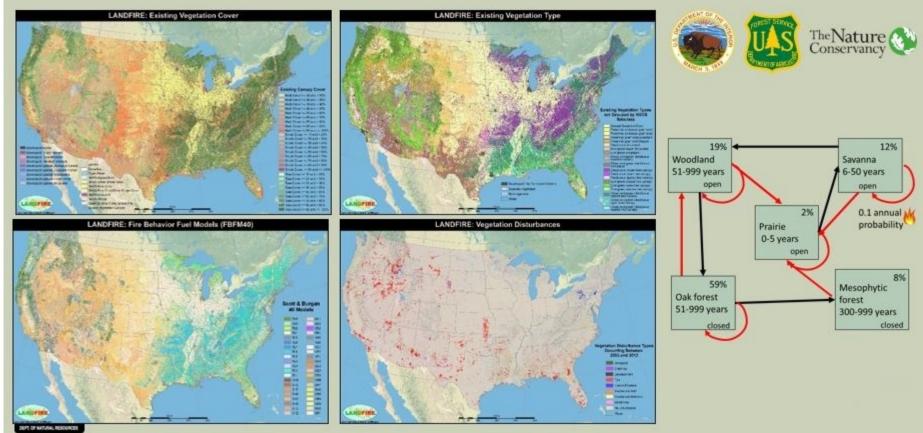
FIRE

- Behavior modeling
- Planning fuel treatments
- Risk assessment
- Management of ongoing fires

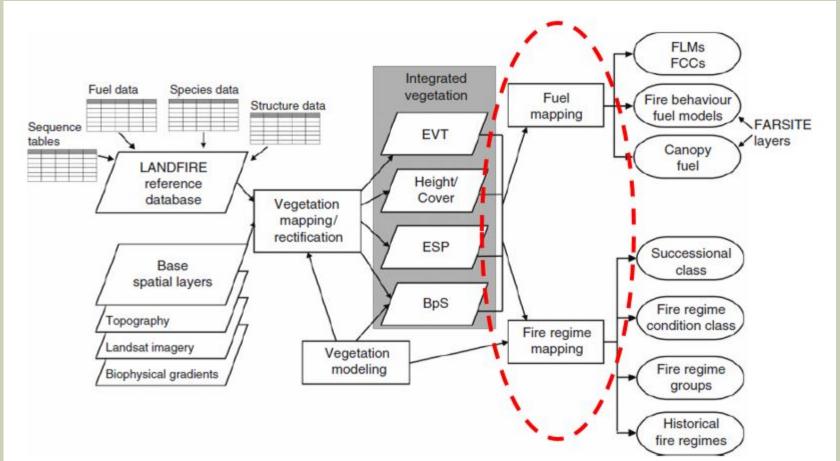
Non-FIRE

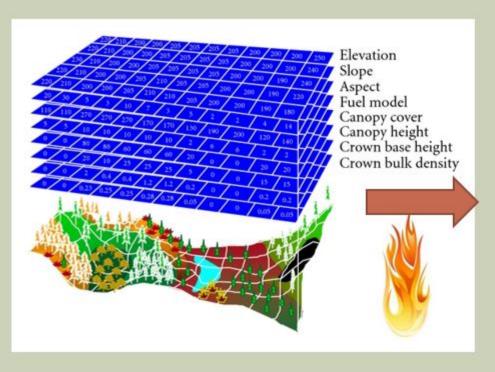
- Habitat mapping
- Carbon cycling
- Sustainable forestry practices
- Watershed management

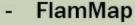
LF AND FUELS MANAGEMENT


- Planning
 - Landscape evaluations, ecoregional assessments, and strategic outcomes/impacts
 - National Environmental Policy Act review and assessment
 - Pre effects
- Reporting
 - Post Effects / change
 - Accomplishments / performance measures / effectiveness

WHAT IS LANDFIRE?


Partnership between DOI, USFS, and TNC aimed to characterize fire, fuels, and vegetation conditions across the country.


DATA PRODUCTS ARE INTERCONNECTED



LANDFIRE DATA AND FIRE MODELING

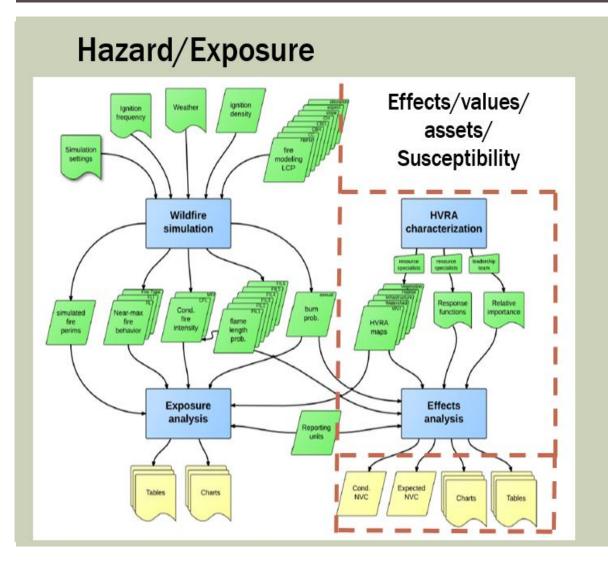
Fire Behavior Modeling

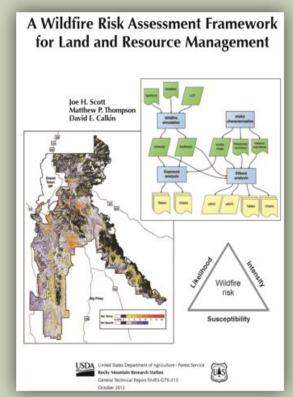
- FSim
- FARSITE
- FSPro
- WFDSS
- IFTDS

Fire behavior estimations to develop:

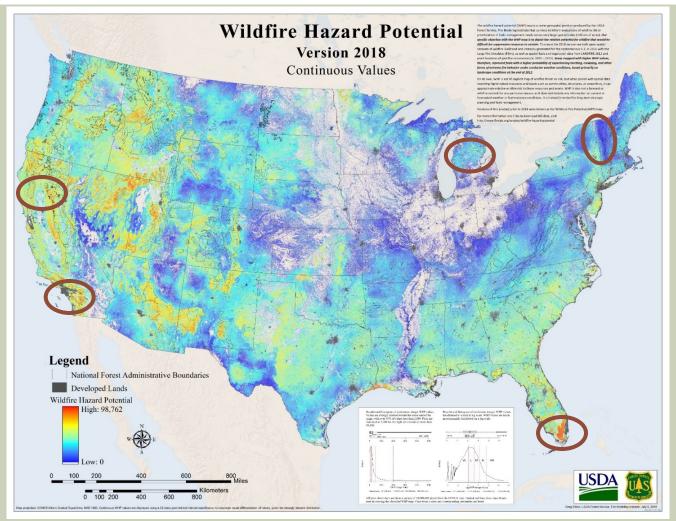
- Fuels management outcomes
- Risk scenarios

WILDFIRE RISK ASSESSMENT OVERVIEW

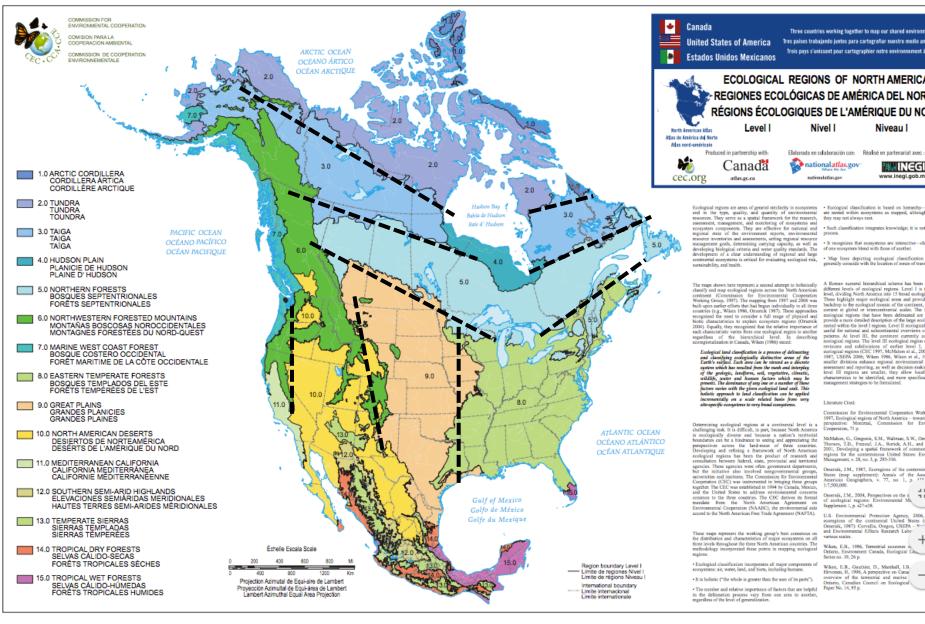




WILDFIRE RISK ASSESSMENT



GTR-315


RISK (eNVC & cNVC)

WILDFIRE HAZARD POTENTIAL

Three countries working together to map our shared environment, Tres paises trabajando juntos para cartografíar nuestro medio ambiente

Trois pays s'unissent pour cartographier notre environnement à tous.

ECOLOGICAL REGIONS OF NORTH AMERICA REGIONES ECOLÓGICAS DE AMÉRICA DEL NORTE RÉGIONS ÉCOLOGIQUES DE L'AMÉRIQUE DU NORD

• INEGI www.inegi.gob.mx

Such classification integrates knowledge; it is not an overlay

Niveau I

· It recognizes that ecosystems are interactive-characteristics of one ecosystem blend with those of another.

A Roman numeral hierarchical scheme has been adopted for A koman naturani netratorical scanner can been despite i or different levels of ecological regions. Level 1 is the consent level, dividing borth America into 15 boad ecological regions. These highlight major ecological areas and provide the broad backdrop to the ecological mosaic of the continent, putting it in context at global or intercentinatinal scales. The 50 Level II

context in global or instructurations, search, the 20 LeVel is ecological regions that have been delineated are intended to provide a more detailed description of the large ecological areas nested within the level I regions. Level II sociogical regions are useful for national and subcontinental overviews of ecological patients. At level III, the continent currently contains 182 ecological regions are the continent currently contains 182 ecological regions. The level III ecological region map depicts revisions and subdivisions of earlier level I, II, and III coological regions (CEC 1997, McMahon et al., 2001, Omersik ecological regions (CEC 1997, McMahon et al., 2001, Omersia, 1987, USEPA 2006; Wiken 1986, Wiken et al., 1998). These smaller divisions enhance regional environmental monitoring, assessment and reporting, as well as decision-making. Because level III regions are smaller, they allow locally defining characteristics to be identified, and more specifically oriented

Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America - toward a common perspective: Montreal, Commission for Environmental

Thorson, T.D., Freconi, J.A., Rorick, A.H., and Keyn, J.E., 2001, Develoging a spatial framework of common ecological regions for the consterninous United States: Environmental Management, v. 28, no. 3, no. 291-1142

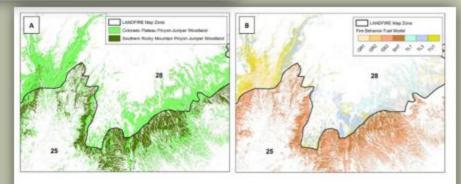
Omernik, J.M., 1987, Ecoregions of the conterminous United States (map supplement): Annals of the Association of American Geographers, v. 77, no. 1, p. 118-125, scale

Omernik, J.M., 2004, Perspectives on the n of ecological regions: Environmental Ma Supplement 1, p. s27-s38.

U.S. Environmental Protection Agency, 2006, Level III ecocgions of the continental United States (revision of Onersis, 1987; Corvalis, Oragon, USEPA — Normal Health and Environmental Effects Research Labor — 3 M-1, +

Wiken, E.B., Gusthier, D., Mamball, I.B.
Hirvenen, H., 1996, A perspective on Canaloverview of the terrestrial and marine Octarino, Canadian Council on Ecological sistemal Paper No. 14, 95 p.

NEED FOR LOCAL CALIBRATION


Modifying LANDFIRE Geospatial Data for Local Applications

Version 1 September 2016

Figure 1. An example of how the spatial resolution of raster data has a direct effect on positional accuracy. LANDFIRE 30-meter resolution data does not precisely depict the shoreline or the boundary between grass (yellow shade) and forest (green shade) when viewed at a small extent (A), but at a broader extent (B), these differences are less apparent and less significant. The red rectangle in panel B shows the extent of panel A.

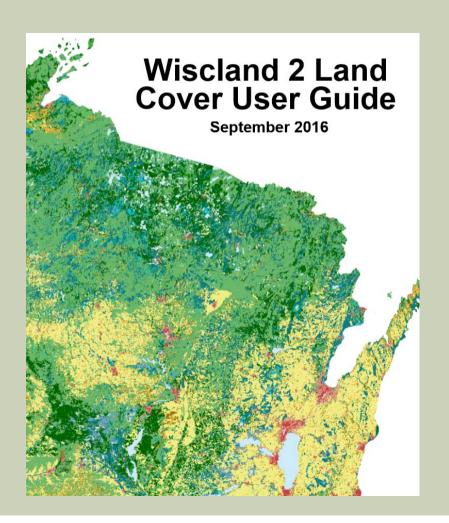
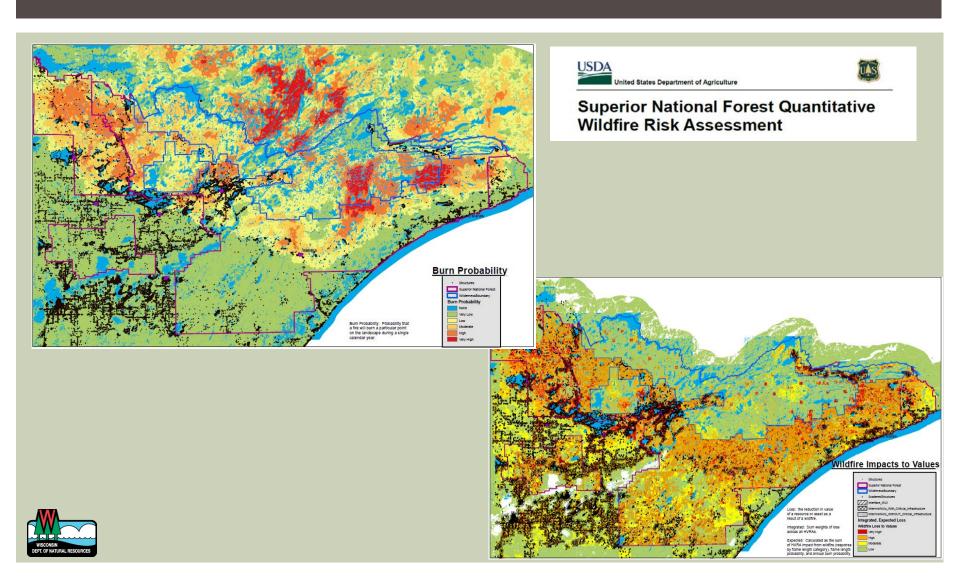
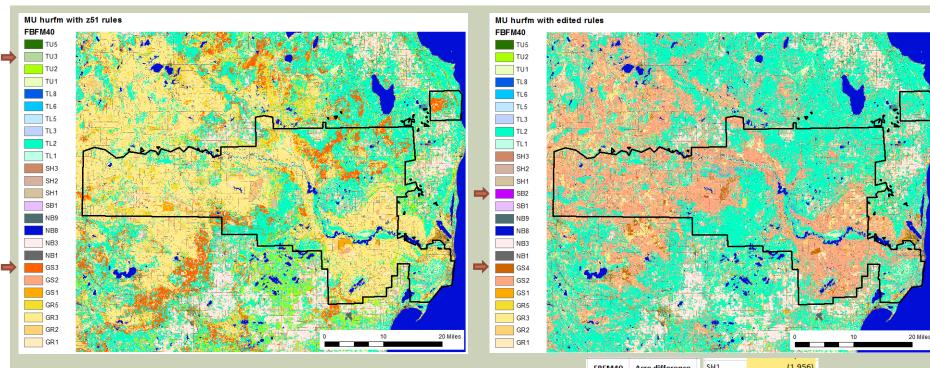

Existing Vegetation Type		Zone 28	Zone 25						
	Tree Cover (%)	Tree Height	FM	CG	Tree Cover (%)	Tree Height	FM	CG	
	10-29	Any	GR1	1	10-19	Any	GR2	0	
Colorado Plateau Pinyon-Juniper	30-39	Any	TU1	1	20-49	Any	G52	0	
Woodland	40-59	Any	TL3	- 1	50-100	Any	TL3	1	
	60-100	Any	TL1	1			(+)	-	
	10-19	Atty	GR2	1	10-29	Any	G82	0	
Southern Rocky Mountain Pinyon- Juniper Woodland	20-59	Any	GS2	- 1	30-49	Any	SH7	0	
Sorger Hoodard	60-100	Any	TL3	1	50-100	Any	TLS	- 1	

Figure 15. Example of variation in fire behavior fuel mapping rules by existing vegetation type and map zone. Panel A shows the existing vegetation type at the map zone boundary; panel B shows the fire behavior fuel model. FM refers to the standard Fire Behavior Fuel Model (Scott and Burgan 2005). CG refers to the canopy guide feature in the LANDFIRE Total Fuel Change Tool that controls how canopy fuels are mapped.

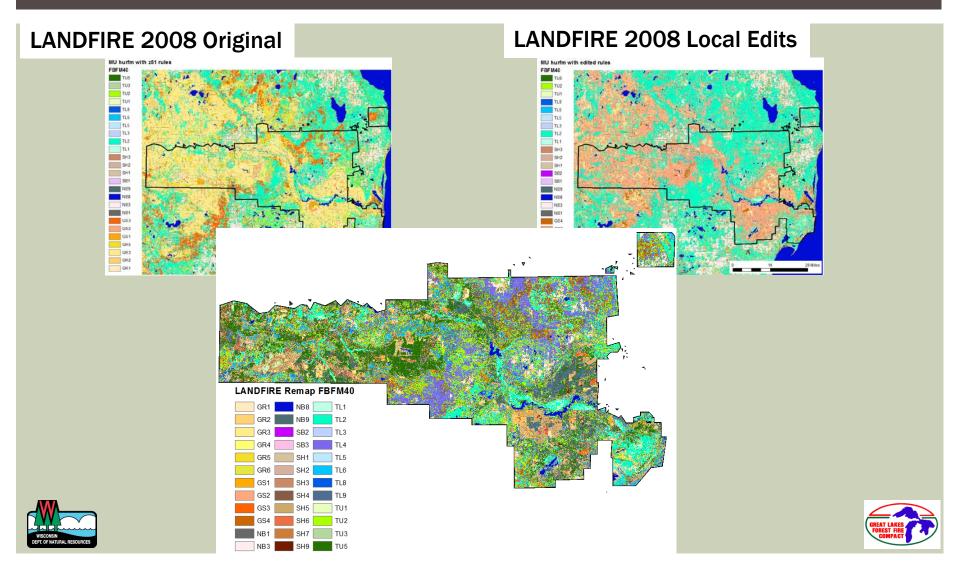

HOME GROWN CLASSIFICATIONS



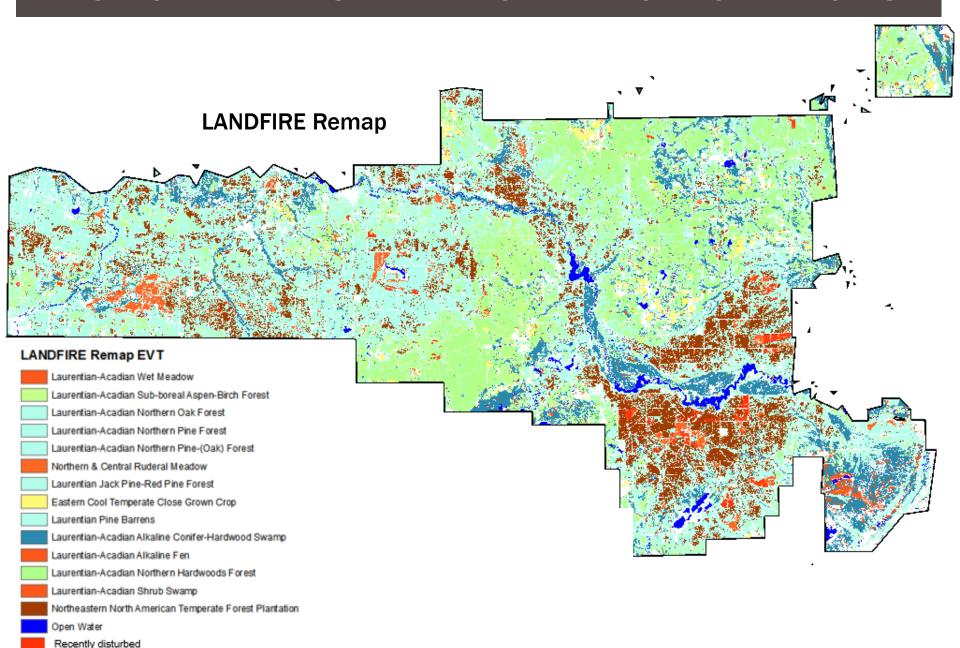
SUPERIOR NF RISK ASSESSMENT

HURON MANISTEE FUEL MODEL CRITIQUE

Most noticeable changes:


- GR3 to GS2
- GS3 to TL2
- TU2 to TL2
- 2 FBFMs removed and 2 added

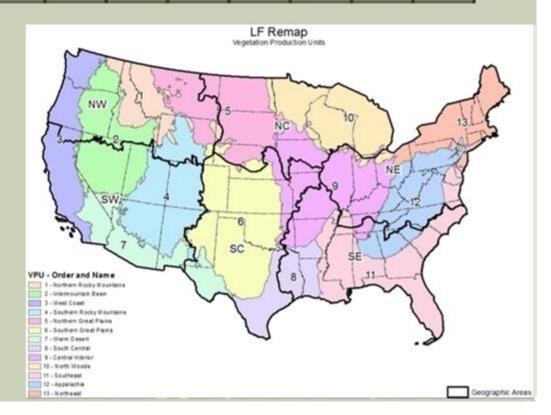
FBFM40	Acre difference	SH1	(1,9
NB1	_	SH2	95,9
NB3		SH3	(4
	-	TU1	(1,2
NB8	-	TU2	
NB9	(659)		(67,2
GR1	9,520	TU3	(3,8
GR2	(29,673)	TU5	-
GR3	(539,928)	TL1	(7,2
GR4	(555)525)	TL2	324,7
GR5	(156,137)	TL3	(1,5
GS1		TL5	-
921	(12,980)	TL6	
GS2	558,305		-
GS3	(179,413)	TL8	-
GS4	13,878	SB1	(2
SH1	(1.956)	SB2	2
SUT	11.5301		

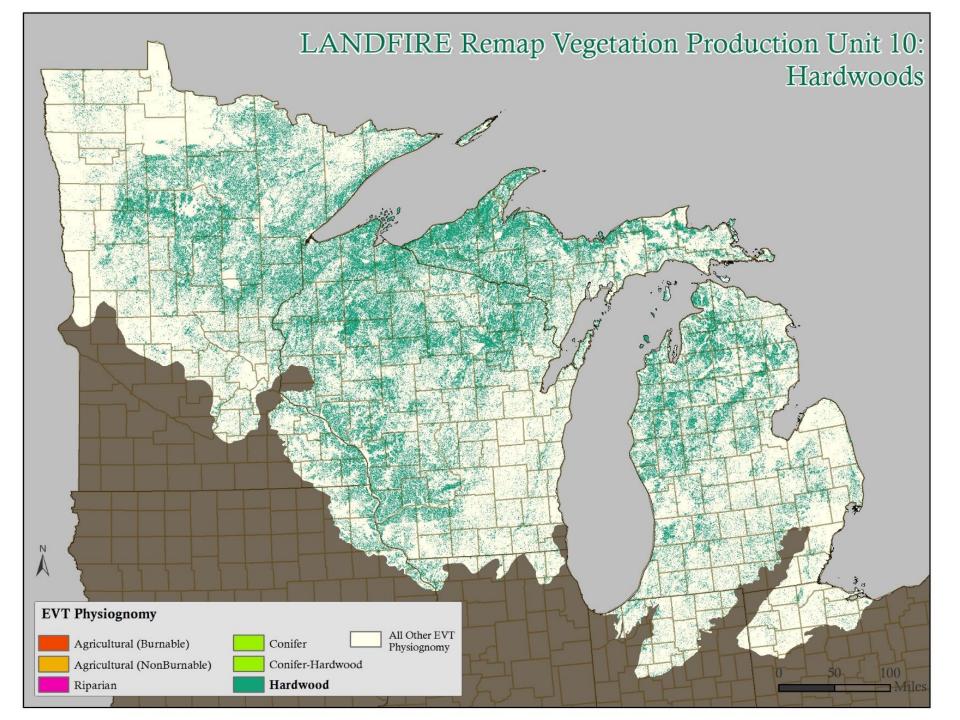


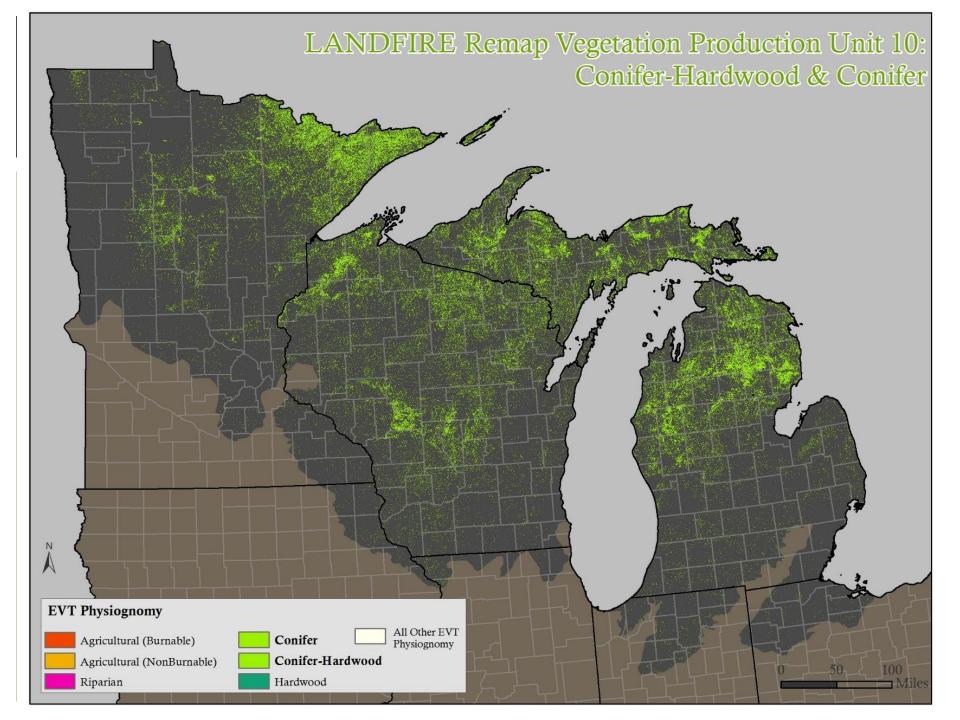
HURON MANISTEE FUEL MODEL CRITIQUE

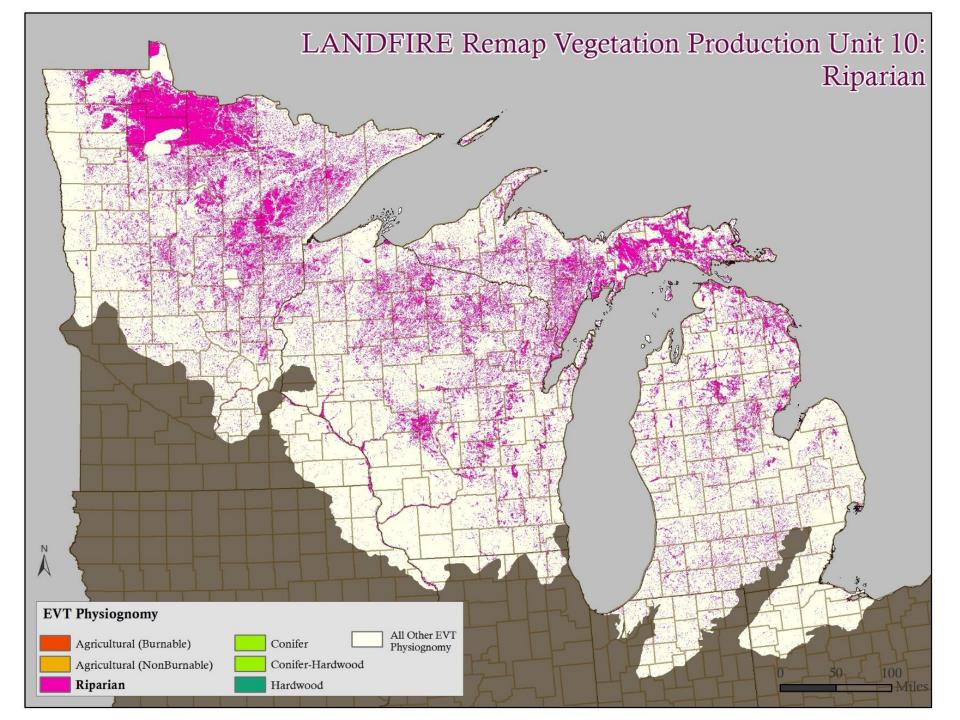
HURON MANISTEE VEGETATION CHANGES

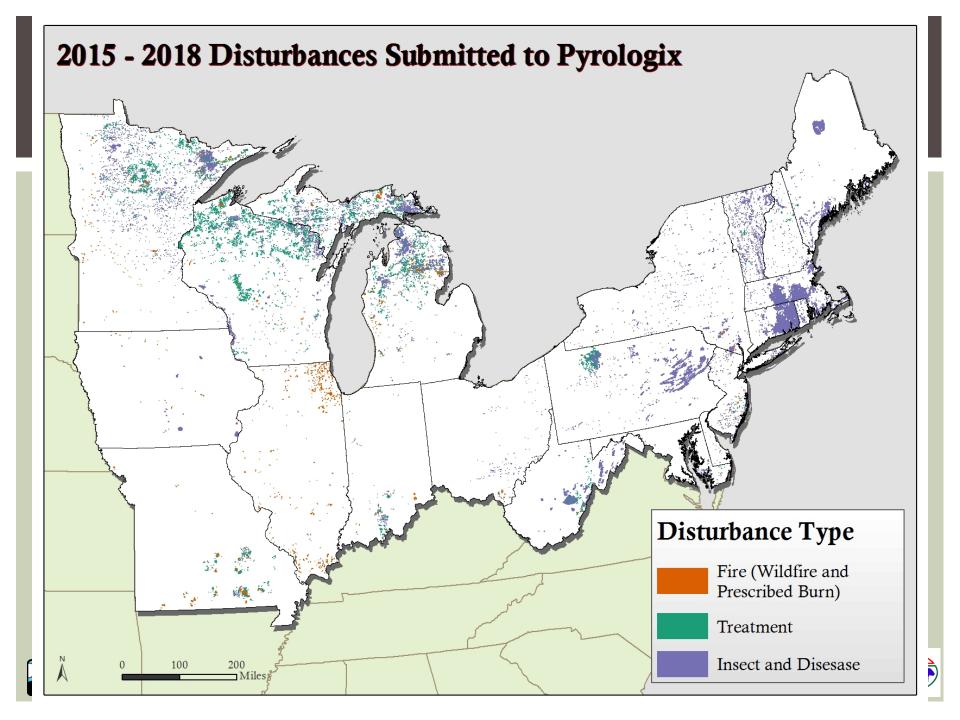
UPDATE ON REMAP

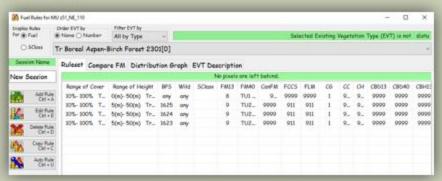

Updates (Refresh)							ReMap					
Version	LF c2001 National	2001	2008	2010	2012	2014	LF c2015 ReMap	2016	2018	2020	2022	2024
Туре	Base Map	Revision	Update	Update	Update	Update	Base Map	Update	Update	Update	Update	Update


REFRESH


- Make updates to existing base map
 - 'Event' data disturbances, treatments, etc.


REMAP

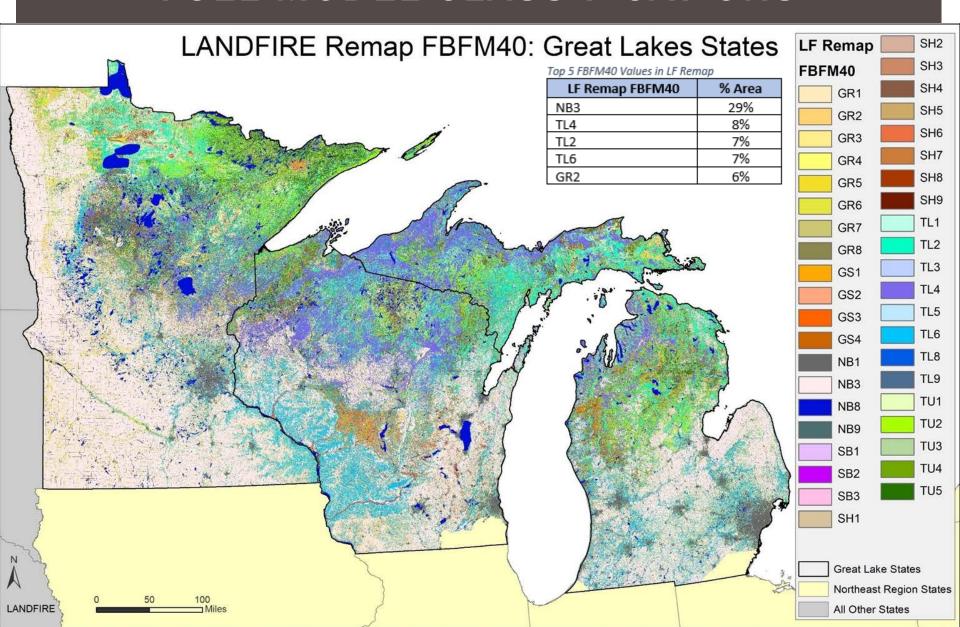

- Re-create base map
 - New 'plot' data to classify EVT
 - New satellite imagery
 - New biophysical datasets to define EVT

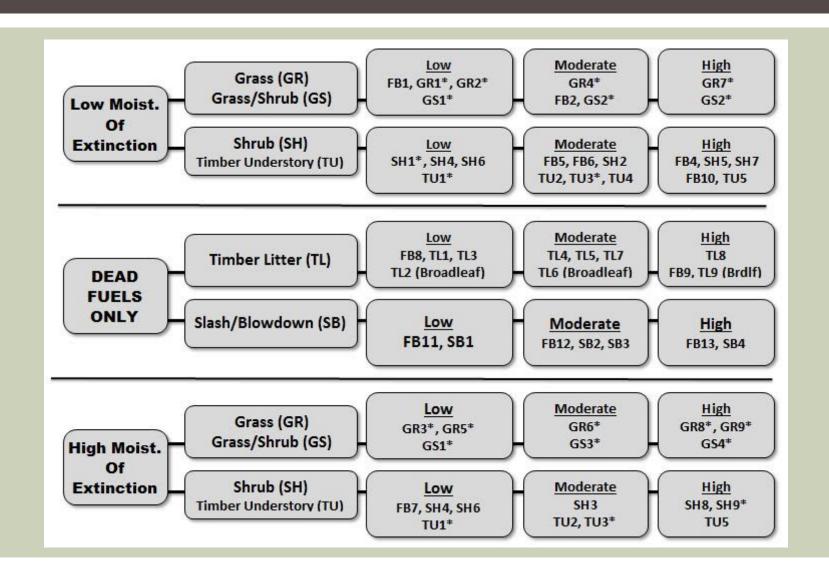


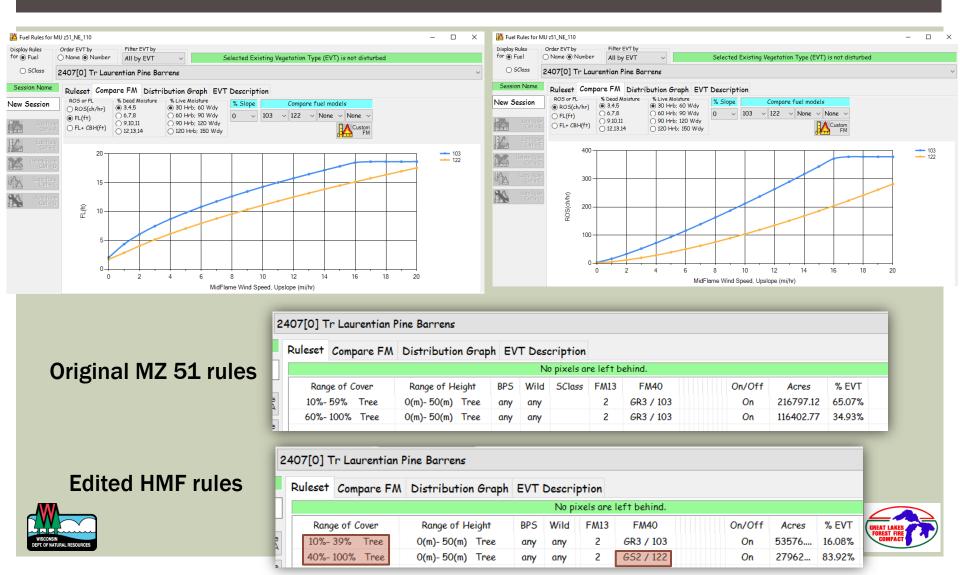
SURFACE FIRE BEHAVIOR FUEL MODELS

- Original: Anderson 13
- Updated: Scott and Burgan 40
- LANDFIRE mapped based on tabular rule sets calibrated to each map zone
- Full database of rule sets is available online: https://landfire.gov/fuel_rulesets_db.php
- To critique rulesets and produce updated FBFM rasters, use the LANDFIRE Total Fuels Change Tool

https://landfire.gov/download_lfdat.php#lftfct






FUEL MODEL CLASSIFICATIONS

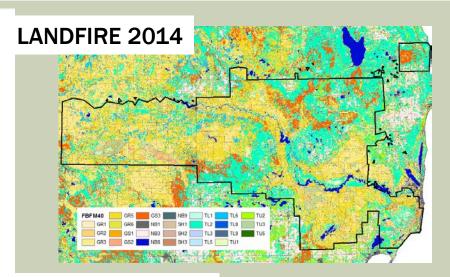
US FIRE BEHAVIOR FUEL MODELS

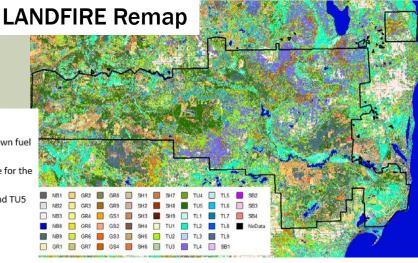
LAURENTIAN PINE OAK BARRENS GR3 TO GS2

HURON MANISTEE

EVT: 2407 Tr Laurentian Pine Barrens (applying same rules to 2243 and 2344)

Original non-disturbed ruleset

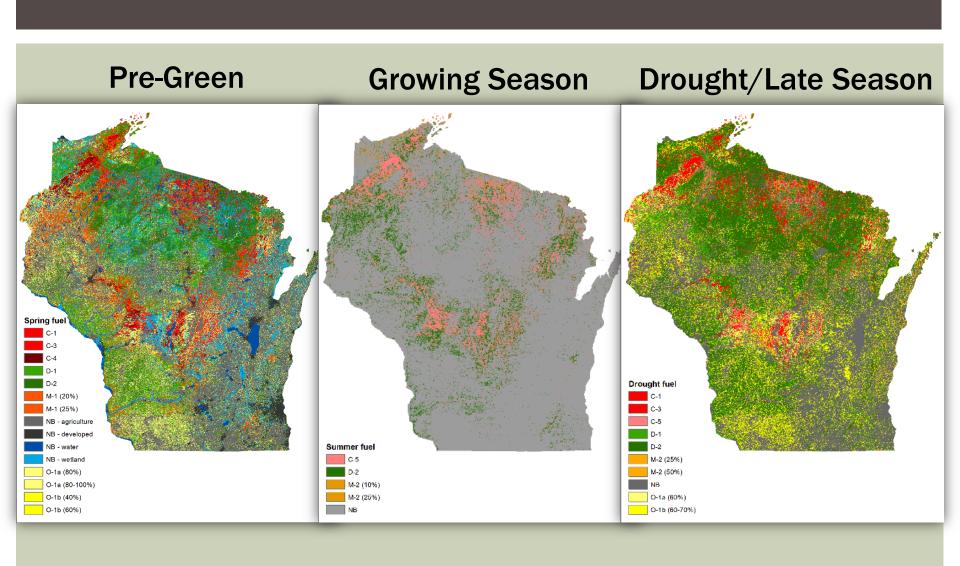

Fuel Model for FDIST 000	CL	CH	HL	НН	BPS	CG
GR3 / 103	101	105	108	111	any	1
GR5 / 105	106	109	108	111	any	1
GS3 / 123	111	115	104	107	any	0
GS4 / 124	116	117	104	107	any	0


Updated ruleset

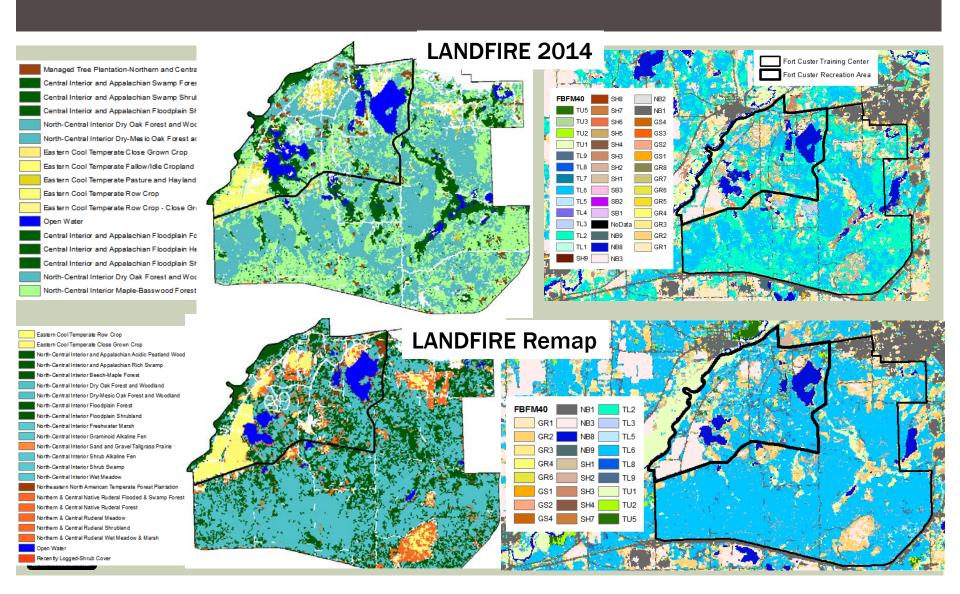
Fuel Model for FDIST 000	CL	СН	HL	НН	BPS	CG
SH9 / 149	101	106	108	108	any	0
SH5 / 145	101	109	109	109	any	0
SH5 / 145	101	107	110	112	any	1
SH5 / 145	107	109	108	108	any	0
TU5 / 165	108	109	110	112	any	1
SH9 / 149	111	116	104	106	any	0
SH5 / 145	111	119	107	107	any	0
SH5 / 145	117	119	104	106	any	0

Summary of changes

- This applies to FVTs 2407, 2243, 2344 -- we discussed plantations (FVT 2534) but ended up giving it it's own fuel box because it was different
- Note that FVT 2243 originally had some BpS exceptions for BpS models 1628, 1601, 1572 but those were for the model "Laurentian Pine-Oak Barrens" so they were discarded after generating this fuel box
- Started essentially from scratch for this fuel box... tree lifeform is mostly SH5 with SH9 for short/open and TU5 for tall/closed; shrub is mostly SH9 with SH5 for tall/closed
- o Canopy Guide of 0 for tree lifeform <10 meters
- o Need TI of 15-20 mph range for TU5
- o Copied rules for Mech Add into Wind and Mech Remove into I & D



GREAT LAKES LANDFIRE REMAP TOP 10 FUEL CHANGES


https://bit.ly/38bCwQ0

FBFM40		Total Area	% of All Area	Change: Beha		LF Remap EVT driving this change	Explanation/rationale
LF 2014	LF Remap	Changed	Changed	Rate of Spread	Flame length	Lr Keniap Lv i unving uns change	Explanation/ fationale
TU1	TL4	4,857,358	7.4%	-	-	Laurentian-Acadian Northern Hardwoods Forest	Very complex EVT and fuel rules. "Hardwood" BpS identifying maple systems,
TL2	TL4	3,700,817	5.6%	+	+	Laurentian-Acadian Northern Hardwoods Forest	original rules overstate fire behavior
TL2	TU2	1,825,350	2.8%	+	+	Laurentian-Acadian Sub-boreal Aspen-Birch Forest	Workshop attendees noted TU2 is more appropriate at mid-range of canopy cover
GR3	GR2	1,697,922	2.6%	-	-	Eastern Cool Temperate Pasture and Hayland/Northern & Central Ruderal Meadow	Mostly in Minnesota; does not match our workshops as this was one of the two rules where LF did not implement our changes (2014 EVT was Developed Ruderal Grassland)
TU1	TL2	1,623,455	2.5%	-	-	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	Driven by a change in EVT from Boreal Acidic Peatland Forest or Northern Hardwoods Forest
TL2	TL6	1,484,951	2.3%	-	-	North-Central Interior Dry-Mesic Oak Forest and Woodland/North-Central Interior Beech-Maple Forest	At workshops, introduced Hardwood BpS rule, identifying mostly hardwood component with less extreme fire behavior
GR2	NB3	1,206,782	1.8%	-	-	Eastern Cool Temperate Close Grown Crop/Eastern Cool Temperate Row Crop	Reclassified from Eastern Cool Temperate Pasture and Hayland in 2014
TL6	SH4	1,181,876	1.8%	+	+	Laurentian-Acadian Northern Hardwoods Forest	Change in fuel assigned to Hardwood-Conifer BpS vegetation group, which helps identify oak and pine components which increase fire behavior
TL6	TL9	1,117,911	1.7%	+	+	Laurentian-Acadian Northern Hardwoods Forest	Change in fuel assigned to Conifer BpS vegetation group, which mostly identifies largest conifer component, increasing fire behavior
NB3	GR2	1,013,583	1.5%	+	+	Eastern Cool Temperate Pasture and Hayland/Northern & Central Ruderal Meadow	Reclassification of Close Grown Crop and Row Crop

CFFBP FUELS CONCEPT

FORT CUSTER IN LANDFIRE

LANDFIRE.GOV

<u>Homepage</u> » <u>Data Products Overview</u> » **Tools, Services, and Training**

Data Products: Tools, Services, and Training

Tools

- Data Distribution Site (DDS)
- LANDFIRE (LF) Data Access Tool (LFDAT)
- LF Total Fuel Change Tool (LFTFC)
- State-and-transition simulation (ST-Sim)

Services

- Landscape (.LCP) File
- Data Mosaics
- Web Service Calls
- Modifying Geospatial Data Guidebook
- Videos and Tutorials
- · LF product codes for scripting
- Library
- Frequently Asked Questions

Training Resources

- WFMRD&A-FFE Resources
- Fire Research and Management Exchange System (FRAMES) Resources
- · Professional Resources
- Training Video Resources
- <u>Interagency Fuels Treatment Decision</u> <u>Support System (IFTDSS)</u>
- Modifying LF Geospatial Data for Local Applications guide

STAY UP-TO-DATE WITH LANDFIRE

It's fire season. Take care out there.

LF Remap Release: SW GeoArea, Capable Fuels Products

Spring 2019 MoD-FIS

Q & A: LF Total Fuels Change Tool

For Your Information

Subscribe: http://eepurl.com/cajG91

THERE IS A REASON THIS IS A THING

https://iftdss.firenet.gov

WIFTDSS

Welcome to IFTDSS

The Interagency Fuel Treatment Decision Support System

Use Google Chrome with IFTDSS IFTDSS has been developed and tested for Google Chrome. If you don't currently have Google Chrome installed, visit our Chrome help page for agency-specific guidance.

NEW! Map Values

Read about Map Values (PDF)

Watch the intro to Map Values video

Get started with Map Values in the Help Center

Phasing in Risk Assessment

Read about Quantitative Wildfire Risk Assessment (PDF)

Read about Landscape Burn Probability modeling (PDF)

Get Started with Landscape Burn Probability

FTEM is Part of IFTDSS

What's New

About -

Watch a one minute summary

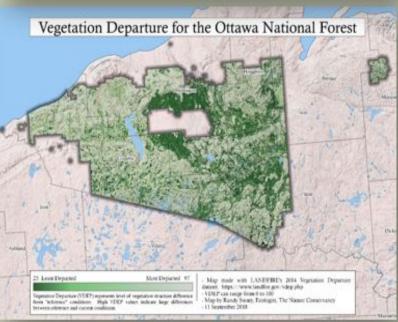
Visit the Help Center

Watch Agency webinars

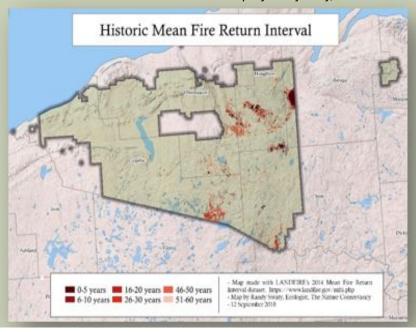
FTEM Flyer (PDF)

We Want to Hear from You

User Support ▼


Login

Take a 5 min. survey
Check out the forum


OTTAWA NATIONAL FOREST

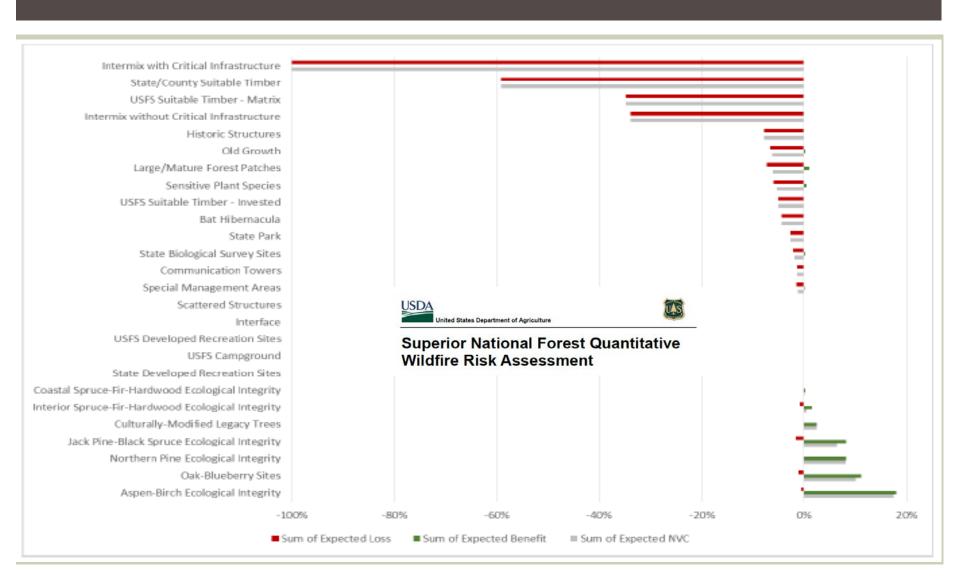
- Restoring fire-dependent ecosystems while reducing current fire behavior.
- Build resilient ecosystems at the landscape level to be able to "live with fire"

Maps by Randy Swaty, TNC LANDFIRE

FUEL PLOTS FOR LANDFIRE

FBInputs

This table contains fuel data relevant to fire-behavior modeling.

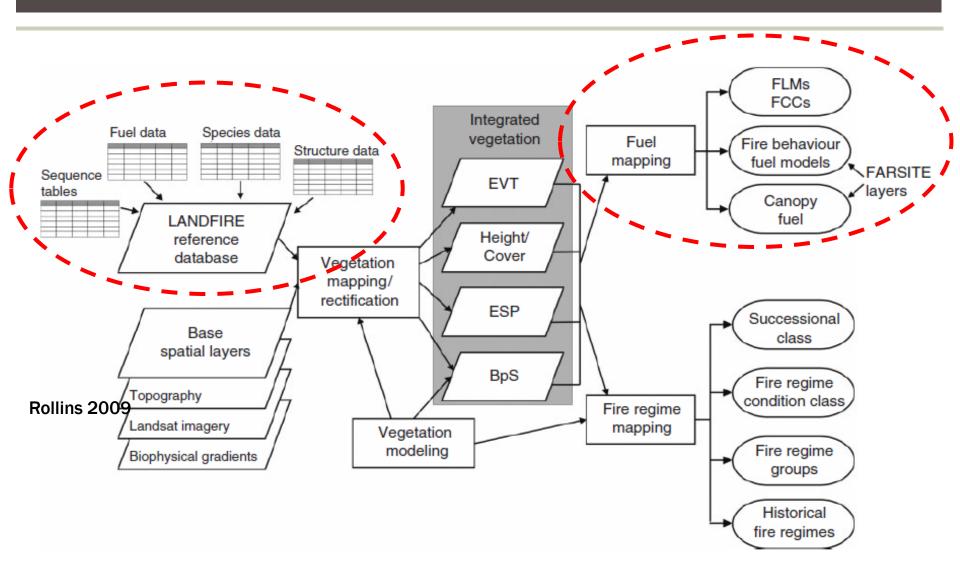

Name	Description				
EventID <i>Required</i>	Unique identifier for this sampling event.				
LwdyCov	Cover (%) of live trees and shrubs in sampling plane (i.e.,				
	below 6 feet).				
DwdyCov	Cover (%) of dead trees and shrubs in sampling plane				
	(i.e., below 6 feet).				
WdyHgt	Average height (feet) of trees and shrubs in sampling				
	plane (i.e., below 6 feet).				
LherbCov	Cover (%) of live herbaceous vegetation.				
DherbCov	Cover (%) of dead herbaceous vegetation.				
HerbHgt	Average height (feet) of herbaceous vegetation.				
IntegFbedDpth	Average shrub/herb heights (feet).				
StandHgt	Typical height (feet) of vegetation taller than 6 feet.				
CanBaseHgt	Typical lowest point above the ground (feet) at which				
	there is sufficient amount of live and/or dead woody				
	vegetation to spread a fire vertically into the overstory				
	vegetation.				
CanCov	Cover (%) of woody vegetation taller than 6.5 feet.				
FBFM13	Fire Behavior Fuel Model (Anderson 1982). See				
	lutFBInputsFBFM13 for code definitions.				
FBFM40	Fire Behavior Fuel Model (Scott and Burgan 2005). See				
	lutFBInputsFBFM40 for code definitions.				

FBInputs

This table contains fuel data relevant to fire-behavior modeling.

. [Name	Description					
	EventID <i>Required</i>	Unique identifier for this sampling event.					
H	FWD1hBmass	1-hour fuel (small Fine Woody Debris [FWD]; 0.00-0.24 inches diameter) biomass					
Ш		(tons/acre).					
1	FWD10hBmass	10-hour fuel (medium FWD; 0.25-0.99 inches diameter) biomass (tons/acre).					
	FWD100hBmass	100-hour fuel (large FWD; 1.00-2.99 inches diameter) biomass (tons/acre).					
$\ [$	FWDTotBmass	1 to 100-hour fuel (total FWD) biomass (tons/acre).					
	CWDSndBmass	1000-hour sound fuel biomass (tons/acre).					
	CWDRotBmass	1000-hour rotten fuel biomass (tons/acre).					
1	CWDTotBmass	1000-hour fuel (total Coarse Woody Debris [CWD]; 3.00 inches in diameter and					
I		greater) biomass (tons/acre).					
H	CWD9plusSndBm	10,000-hour sound fuel biomass (tons/acre).					
l	ass						
	CWD9plusRotBm	10,000-hour rotten fuel biomass (tons/acre).					
l	ass						
Ш	CWD9plusTotBmas	10,000-hour fuel (total Coarse Woody Debris [CWD]; 9.00 inches in diameter and					
II	S	greater) biomass (tons/acre).					
	DuffLittDpth	Combined duff and litter depth (inches).					
Ц	DuffDpth	Duff depth (inches).					
I	DuffBmass	Duff biomass (tons/acre).					
	LittDpth	Litter depth (inches).					
	LittBmass	Litter biomass (tons/acre).					
	SIshBmass	Slash biomass (tons/acre).					
	TotFuelBmass	Combined biomass of FWD, CWD, duff, and litter (tons/acre).					
l	LWdyBmass	Biomass (tons/acre) of live trees and shrubs in sampling plane (i.e., below 6 feet).					
Ш	DWdyBmass	Biomass (tons/acre) of dead trees and shrubs in sampling plane (i.e., below 6					
H		feet).					
Ш	TotWdyBmass	Biomass (tons/acre) of live and dead trees and shrubs in sampling plane (i.e.,					
Ц		below 6 feet).					
	LHerbBmass	Biomass (tons/acre) of live herbaceous vegetation.					
	DHerbBmass	Biomass (tons/acre) of dead herbaceous vegetation.					
	TotHerbBmass	Biomass (tons/acre) of live and dead herbaceous vegetation.					
	FCCSProtoFuelbed	Fire behavior fuel model selected from 113 options in the FCCS Prototype					
Į		Fuelbed set.					

SUPERIOR RA: CUMULATIVE EXPECTED LOSS AND BENEFITS FROM WILDFIRE



EXTRA SLIDES

SHARE YOUR DATA WITH LANDFIRE

- Guidance on submitting data to LANDFIRE
- E-mailBrenda.Lundberg atblundberg@contractor.usgs.gov

LANDFIRE Reference Data Attributes: This table lists the minimum information LANDFIRE needs to continue to improve our products. Additionally, more specific details are requested from stakeholders when possible to further assist with data improvements. Not all attributes are needed for each observation or event. Any information you can provide is useful as long as the minimum requirements are met.

2014	Event Data	LFRDB Plot Data	Feedback Data
Minimum Requirements	•GIS polygon •generalized event type or exotic species •year	plot geo-reference basic vegetation or fuel attributes (i.e. cover type label or fuel model call) code definitions in data tables	•narrative
Good	GIS polygon detailed event type or exotic species year start and end date	plot geo-reference sampling date list of plant taxa with canopy cover fine and coarse woody material counts or biomass code definitions in data tables	•narrative •GIS data outlining areas of concern
Better	GIS polygon detailed event type or exotic species year start and end date official event name reporting agency	plot geo-reference sampling date list of plant taxa with canopy cover and height individual tree measurements fine and coarse woody material counts or biomass code definitions in data tables	*narrative *existing vegetation or fuel maps that depict ground conditions
Best	*GIS polygon *detailed event type or exotic species *year *start and end date *official event name *reporting agency *event severity *exotic species percent cover/infestation level	plot geo-reference sampling date full list of plant taxa with canopy cover and height individual tree measurements fine and coarse woody material counts or biomass litter and duff layers depth or biomass live and dead shrub or herbaceous material biomass code definitions in data tables	•narrative •edited previous version of LANDFIRE data products
Bonus Information	*post disturbance/event fuel model or vegetation type *description of treatment's success level in meeting management objectives *additional comments about the event and resulting landscape changes	plot photographs project descriptions or final reports data dictionaries	•additional information or supporting documentation that will document the issue
Examples Datasets with Beneficial Attributes	•USFS FACTS data •CAL Fire perimeters	•FIREMON data •FFI data	

